很多同学想要了解关于“高中数学复合函数求导公式及法则”的知识解答,本文整理了关于“高中数学复合函数求导公式及法则”的相关内容,以下为具体信息:
解答:
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
复合函数如何求导
f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),
从而(公式):f'[g(x)]=f'(u)*g'(x)
呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!
f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)
所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).
以此类推y'=[cos(3x)]'=-3sin(x)
y'={sin(3-x)]'=-cos(x)
一开始会做不好,老是要对照公式和例子,
但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。
复合函数求导法则
证法一:先证明个引理
f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)
证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0
x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)
所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
x0)f'(x)=H(x0)
所以f(x)在点x0可导,且f'(x0)=H(x0)
引理证毕。
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)
又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)
于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)
因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且
F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)
0)α=0)
当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu
但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。
0的极限,得
0)αΔu/Δx
0
0)α=0
最终有dy/dx=(dy/du)*(du/dx)
想要获取更多高中数学知识点问题解答,请点击查看:高中数学专栏
点击进入>>高中数学知识点汇总
》〉更多学科高中知识点专栏推荐:
高中语文 | 高中数学 | 高中英语 |
高中政治 | 高中历史 | 高中地理 |
高中物理 | 高中化学 | 高中生物 |
2024年河南警察学院招生信息,2024年河南警察学院本、专科毕业证明书办理流程
2024年闽江师范高等专科学校学费,闽江师范高等专科学校2024年奖学金助学金情况
2024年丽江师范高等专科学校艺术类录取分数线,丽江师范学院2024年云南高职(专科)批艺术体育类录取分数线
2024年河南科技大学入学须知,河南科技大学关于做好2024级本科新生入学资格审查、录取资格复查工作的通知
2024年沈阳医学院普通类录取分数线,沈阳医学院2024年在新疆维吾尔自治区专科录取分数线
2025年江海职业技术学院高考招生资讯,江苏省2025年普通高中学业水平合格性考试时间公布
闽江师范高等专科学校学费,闽江师范高等专科学校住宿条件好吗
2024年泉州轻工职业学院单独招生报名考试,泉州轻工职业学院2024年高职分类考试招生章程
2024年四川职业技术学院补录,四川职业技术学院2024年四川普通大专补录招生计划
2024年达州中医药职业学院普通类招生计划,达州中医药职业学院2024年专科补录分专业招生计划
综合2024/7/29
综合2024/7/18
综合2024/7/18
综合2024/7/18
综合2024/7/16
综合2024/7/16